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An analysis was made in [1] of an approximate method of cal- 
culating the temperature field for the case when heat is transmitted 
to an object by two simultaneous parallel fluxes: radiative and con- 
vective. This method proved to be accurate enough if the heated 
article is not too massive in the thermal sense, L e . ,  if  the dimen-  
sionless parameters sk and Bi do not exceed 0.5. 

The present paper describes a method of determining the tem-  
perature fieId in a slab under the condition that 

0 . ~  Sk < o% 0 .~Bi  <oo.  

The equation for the unsteady temperature distribution in a plate 
has the form 

O0 (X,Fo) am 0 (X, Fo) 

OFo OX ~ 

(0~ . .X .~ I ;  F o > 0 ) .  (1) 

We have to solve this equation under the following boundary and 
initial conditions: 

dO(l,  Fo) _ {Bi-q-Sk[l+O(1, Fo)-b 
OX 

q-~'e 2 (i ,  Fo) q- e s (1, Fo)]} [1-- e (I, Fo)], 

OO (o, Fo) 
OX --0, 

O (X, 0) = O0 = const. 

(~) 

(a) 

(4) 

Boundary condition (2) may be written in the somewhat different form 

Oe (Z, Fo) 
OX =B i *  (Fo) [1 - -  e (1, Fo)]. (2') 

Here the expression Bi*(Fo) is understood to be 

Bi* (Fo) = B i§  Sk [1 + e (1, Fo) q- ~ (1, Fo) q- O s (1, Fo)]. (5) 

Thus, the process (1)-(4) may be reduced conditionally to the 
case of heating with a variable heat  transfer coefficient. However, 
the nature of the dependence of the parameter Bi*(Fo) on t ime re- 
mains as yet unknown in explicit  form. 

As an approximate analytical  solution of gqs. (1), (2'), (8), and 
(4) a formula of the following form is valid: 

e ( x ,  F o ) =  1 - - ( 1 - - e o )  E AnZn (Fo) • 

F o  

X cos [t~n (Fo) XI exp - -  .t" Ix'n (Fo) dFo, (6) 
0 

where #n(Fo) are the roots of the characteristic equation 

.u (Fo) tg [~ (Fo)l = Bi* (Fo); (7) 

A n are the constant coefficients 

2 sin ~n (0) 
An= Fm (0) q- sin I.tn (0) cos Pn (0)' (8) 

The form of the functions 

(9) 
sin2t~n(0) ,/, s i n ~ n ( F o )  ]_1/ ,  

is established from the condition that 

I 

yWn (X, Fo) cos [Ixn (Fo) Xl dX = 0, 
0 

where Wn(X, Fo) is the inviscid solution of (6) and the differential 
equation (1). Expression (6) rigorously satisfies the boundary conditions 
(2') and (3) and the initial temperature distribution (4), and is  in 
satisfactory agreement with Eq. (1) for the Zn(FO ) as determined from 
(9). In the case Bi* = const, the relation (6) reduces to the exact solu- 
tion [2]. 

A first approximation for Bi*(Fo) may be obtained by taking 

O(1,  Fo)=•  

Then 

Bi~ = Bi + Sk (1 q- eo -t- e:  -b e:). (10) 

From the value of Bi~ [and using (6)] a first approximation to ~(X, 
Fo) is found: 

Ox(X, Fo) = 1 - - (1  - -00 )  2 Anc~ exp--~nlF~ (11) 
n = l  

Here #nl are the roots of the equation 

~h ig M1 = B ~. 

H e n c e  

2 Ol(1, Fo )=  1 - - ( l - - O o )  Anc~ --IXnl F~ (11') 

The temperature | Fo) allows us in turn to find a second ap- 
proximation for Bi*(Fo): 

Bi; (Fo) == Bi+Sk [1+ 81 (1, Fo)-j-O~ (1, Fo) ~- e~ (1, Fo)], (12) 

by means of which, using (6), a new approximation is determined for 
the temperature field | Fo): 

On(X, Fo) = 1 - -  (1 - -  Oo) E AnZn~ (Fo) x 
n =  1 

Fo 

cos [~n~ (Fo) X] exp-- ~ ]~n~ (Fo) dFo. (13) • 

0 

Here gnz(Fo) and Znz(Fo ) are calculated from (7) and (9). 
The analogous operations may be repeated even further. For prac- 

tical purposes, however, as a rule, it is sufficient to restrict ourselves 
to the second approximation ~z(X, Fo). 

The table gives the results of calculations for the case when 8k = 
= 0.5, Bi = 1.0, | = 0.2. Data from numerical  integration of the 
system (1)-(4), accomplished on an electronic computer [1], are 

shown, for comparison. 
It should be mentioned that the true values of temperature ~(X, Fo) 

turn out to be somewhat larger than the calculated values ~ (X ,  Fo), 
since the inequality 

Bi* (Zo) > Bi~ (ro) :~ Bi'] 

is observed throughout the whole process (the sign = refers only to the 
t ime  instant when Fo = 0). 

If we assume at the first iteration level that 

Bi~ = Bi q- 4Sk, (14) 
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Variation of Relative Temperature at the Surface and at the Center of a Plate 

(Sk = o . s ;  l l l  = i .o; Oo = 0.2) 

* O, Fo) @(I ,  Fo) O~ Fo BI 1 O, (I, Fo) m~ (Fo) (I, from [1] (0, Fo) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1.0 
1.2 
1.6 
2.0 

1.624 0.2 
1.624 0.512 
1,624 0,586 
1,624 0.633 
1.624 0.671 
1.624 0.704 
1.624 0,733 
1.624 0.782 
1.624 0.822 
1.624 0.855 
1.624 0.904 
1.624 0.936 

1.624 
1 .954  
2.065 
2.144 
2,212 
2.274 
2.331 
2.436 
2.527 
2.606 
2.729 
2,816 

0.2 
0. 552 
0.636 
0.687 
0.728 
0.763 
0.792 
0.842 
0,880 
0.909 
0.948 
0.971 

0,2 
0. 553 
0. 644 
0.699 
O, 742 
O. 778 
0.808 
0. 856 
0.893 
0.919 
0.955 
0.975 

0,2 
0,201 
O, 255 
O. 328 
0.401 
O. 467 
O. 528 
O. 632 
0.714 
0.779 
0.870 
0.924 

@(O, Fo) 
from [13 

02 
0.209 
O. 262 
O. 336 
O. 409 
0.478 
0.54G 
0.646 
O . 729 
O. 793 
0.881 
0.932 

it is more acceptable for the case of relatively large Sk and Bi that 
the inverse phenomenon will occur. This is due to the fact that then 

Bi* (Fo) -.< Bi; (Fo) .~< Bi~. 

The method described may be used for bodies of different geo- 
metrical configuration (cylinders, spheres, prisms, etc. ), and also 
for other nonlinear boundary conditions. 

NOTATION 

@(X, Fo) = T(X,Fo)/T m is the relative temperature; T m is the t em-  
perature of the medium; T o is the initial temperature; (5 is the plate 
half width; cc is the heat transfer coefficient; o v is the view factor for 

radiative heat transfer; a is diffusivity; r is time; | = T0/Tm; Fo = 
= at~62; Bi = a6A; sk = OvT~m6/K. 
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In the solution of this problem it is usually assumed that heat con- 
duction in the direction of flow is negligibly small  in comparison 
with convective heat transfer. When this assumption is made and when 
thermophysical characteristics are assumed to be constant and the veloc- 
ity profile across the tube to be parabolic (which corresponds to steady 
rectilinear symmetr ic  isothermic laminar  flow), the first boundary- 
value problem can be formulated as follows: 

a,t 1 at at 
-o-d ;+  n o ~  - ( I - R~) ~ , 

0 ~< R . < I ,  0 ~ z <  +oo ,  (1) 

t (0, z)  < + co, (2) 

t (1, z)  = / (z), (3) 

t (~, 0) = cp (R). (4) 

To solve this problem we first solve the corresponding homogeneous 
problem, v iz . ,  Eq. (1) on condition that on the surface of the tube 

t ( ! ,  z)=0. ( 5 )  

We will seek special solutions of this auxiliary problem in the form of 
products M(R)exp (-p2Z) on condition that M(R)is the solution of the 
following Sturm-Liouville problem [1]: 

d~M 1 dM 

M ( 0 ) < - + - c o ,  M ( 1 ) = 0 .  (6) 

Direct substitution shows that the solution of problem (6) will be 

a function 

T ( I X R 2 ) = F ( a ,  I, I xR~)exp ( - - -~  - ' R 2 ) ,  (7) 

where F(a,I ,pR z) is a degenerate hypergeometric function, and a = 

= (2 - ;)14. 
Expressing the exponential and hypergeometric function in the 

form of power series in R 2 [2-4] and multiplying these series, which 
is possibIe in view of their absolute convergence, we obtain 

T (Ix R ~) = 1 + X 

k 

x /?~k E (-1F§ 2 ~ r ( a + s )  
]: (a) (sip O--s)l " (8) 

s=0 

TO obtain nontrivial solutions we must find the eigenvalues of/~ 

from the equation 


